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Monte Carlo study of tethered chain conformations in spherical cavities was performed in a relatively
broad range of average segment densities (i.e. numbers of tethered chains with increasing length in
the sphere). Simulations were performed on a tetrahedral lattice using (i) an equilibrated self-avoid-
ing walk for systems containing a single tethered chain with increasing length, and (ii) a simulta-
neous self-avoiding walk of many tethered chains in the spherical cavity together with equilibration
of the system which was performed by a modified algorithm similar to that of Siepmann and Frenkel.
Only a geometric excluded volume effect of segments was considered (i.e. the prohibition principle
of a double occupancy of one lattice site by two different segments). Various distribution functions
(e.g. distribution of the end-to-end and the end-to-gravity center distances and their orientations with
respect either to the radial direction, or to the direction of the first-to-second segment connection,
etc.) were calculated and the effect of increasing average segment density in the sphere on conforma-
tional characteristics of individual chains was studied. It was found that conformational and orienta-
tional properties of relatively short tethered chains are only little affected by increasing segment
density (i.e. by the number of chains in the spherical cavity), whereas arrangements of long tethered
chains are significantly influenced by the density of the system.

A reliable and detailed knowledge of conformational properties of tethered chains is
extremely important for a proper understanding of many processes in physical chemistry of
macromolecules, such as sorption of polymers on various surfaces1,2, behavior of
highly branched polymeric “stars”3,4, or block copolymer micelles in selective sol-
vents5,6 and relaxation processes in systems containing polymeric brushes7–10. One class
of very useful methods for studying those systems are Monte Carlo and molecular dy-
namics simulations11–19. Despite an intense and concentrated interest of theoreticians in
various tethered chain systems, Monte Carlo studies on tethered chains in small closed
volumes are practically nonexistent.

In our recent papers20–23, we have started a systematic study of the behavior of dense
systems of tethered chains in restricted volumes. The main objectives of our investiga-
tion were aimed: (i) to elucidate the conformational behavior of insoluble blocks in
cores of multimolecular micelles in selective solvents, and (ii) to simulate various fast
photophysical processes which proceed in those systems24–29. In order to simulate
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properties of realistic micellar cores, we have studied systems of relatively long chains
at relatively high segment densities.

During our simulations, we have met several interesting problems which are import-
ant for a general understanding of thermodynamic properties of tethered chain systems
in restricted geometries and for a correct interpretation of results of our simulation
procedure, in spite of the fact that they do not fit into the scheme of the intended studies
of photochemical processes in realistic micellar cores. In this communication we report
on two of those problems.

The first one examines a general relationship between properties of an isolated te-
thered chain in a closed spherical volume and the corresponding dense multi-chain
systems. The latter topic concerns the practical applicability, (i.e. the reliability and the
speed of the equilibration procedure, etc.) of a simultaneous multi-chain self-avoiding
walk algorithm at high segment densities and scrutinizes the physical significance of
results at the very limit of its feasibility.

When considering the first topic, the following questions arise:
a) Are certain features of the conformational behavior of an isolated tethered chain

in a constrained geometry partially conserved in dense systems of many tethered chains
under the same geometrical constraints?

b) How is the “memory of the single chain behavior” at various segment densities
influenced by the ratio, ξ = Ll/R (“the external constraint parameter”, ξ). Parameter ξ
represents the relative curvature of the surface with respect to the chain length and
gives a quantitative measure of the strength of external geometrical constraints (L is the
number of segments of the length l, and R is the radius of the spherical cavity)?

c) Does there exist a certain shift towards “the ideal chain behavior” at high densities
(caused by the presence of many other chains) which is known in dense systems of free
(i.e. non-tethered) chains30,31?

The second topic concerns the behavior of dense systems. All variants of simulation
techniques based on the self-avoiding walk do not work well at high densities12,13. It is
therefore necessary to investigate the physical meaning of the data and the general
reliability of the used simulation algorithm.

In this communication we study changes in various conformational distribution func-
tions with increasing chain length in a broad range of average segment densities for
systems of tethered chains in relatively small spherical volumes. This enables us to
answer (at least partially) the above formulated questions.

METHOD

Simulation Procedure

Principles of the simulation technique have been described in details in our previous
papers20–22:
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1. For systems containing a single tethered chain with increasing number of seg-
ments, L, it is the self-avoiding walk on a tetrahedral lattice (with a distance l of the
lattice sites) in a restricted volume with the Rosenbluth weights32 and a modified Me-
tropolis acceptance rule33. The self-avoiding walk starts at a randomly chosen point in
a narrow surface layer. Distribution functions are calculated on the basis of ≈ 106 stat-
istically uncorrelated conformations.

2. Simulation for multi-chain systems proceeds as follows: (i) Conformations of N
tethered chains (each containing L segments) in a restricted spherical volume are gene-
rated by the simultaneous self-avoiding walk on a tetrahedral lattice. All chains start in
a narrow spherical surface layer. “Thermal equilibration” of the system, which is
necessary to remove the bias of the steadily increasing density of the occupied lattice
sites during the simultaneous growth of many chains and to circumvent the “attrition
problem”13 and to correct its consequences, proceeds in two steps: (ii) A randomly
chosen chain is disregarded and a new chain is grown again in the dense system from a
random surface site. This step is repeated (N2/2) times. (iii) To reach the equilibrium of the
system, the step (ii) is repeated again (N2/2) times and the Rosenbluth weights, wi

(k), in

each step, i, and the total weights of resulting chain conformations, k, Wk = Π
i = 1

L

 wi
(k), are

evaluated, (w1
(k) = 1, k = 1,2, for the old and the new conformation, respectively). The

new conformation of a chain is accepted according to a modified Metropolis criterion
for the factor (Wnew/Wold). The system consisting of the last N accepted chains is con-
sidered as one statistically uncorrelated multi-chain conformation which represents a
randomly chosen micellar core from the thermally equilibrated micellar system.

The simulation procedure is a specific modification of the algorithm proposed by
Siepmann and Frenkel34 for dense polymer systems. It is a suitable simulation tech-
nique for systems of tethered chains20–22. We have tested also the three-bonds “crank-
shaft” motion (a modification of the Verdier algorithm35) in the studied system, but the
latter was relatively slowly convergent and thus much less efficient than the previous one. 

In this paper, we consider only the geometrical excluded volume effect of segments
which plays  more important role in dense systems (and mainly in dense constrained
systems) than relatively small additional attractive, or repulsive interactions between
individual polymer segments and solvent molecules31,36.

The presented distributions were calculated on the basis of ≈ 104 statistically uncorre-
lated multi-chain arrangements. The simulation of each multi-chain arrangement starts
by a totally independent simultaneous self-avoiding walk and continues by the above
described equilibration of the system, which represents a generation of N2 new chain
arrangements (generally ≈ 104 to 105 segment positions). It means that the data are
based on ≈ 108 to 109 successfully generated segment positions.

Simulations for highly dense systems (a fraction of the occupied lattice sites ≈ 0.6
and higher) were modified in the following way: In dense systems, the most time-con-

2168 Prochazka, Limpouchova:

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



suming procedure is the simultaneous self-avoiding walk which creates the starting
multi-chain arrangement for further equilibration of the system. In that case, only a
very low fraction of generated segment positions in the constrained multi-chain system,
≈ 10−3, are accepted. To accelerate our simulations, we have performed a simultaneous
self-avoiding walk with a bit shorter chains containing (L − m) segments. We have used
m ∈  <1,22> to test the speed and convergency of this simulation variant. All chains
were one by one disregarded and grown again up to the length L. Then steps (ii) and
(iii) of the above described equilibration were used to equilibrate the studied system.
Simulations using this modification in a broad range of segment densities have shown
that the equilibrated data are identical with those presented earlier. In contrast to the
original simulation technique, the upgraded variant may be successfully used for eleva-
ted segment densities in a reasonable time.

Physical nature of the problem does not require to use the periodic boundary conditions.
Calculations were performed on a DEC 5000/200 computer. Programs were written

in FORTRAN 77. The longest calculations took up to several weeks of the CPU.

Calculated Distribution Functions

All functions presented in this communication were constructed as histograms during
simulations of many individual chain conformations:

a) Distribution of the tethered end-to-free end distances of individual chains,
ρTF(rTF), corresponds to the probability that the free end of a chain is located in the
distance rTF from the tethered end which is placed in a narrow spherical surface layer
of the thickness, ∆S = 0.1 l. Distribution, ρTF(rTF), was calculated as follows: A chain
configuration is created inside the spherical cavity and a system of narrow concentric
layers is drawn around the tethered end in the cavity (see Fig. 1). If the free end falls

FIG. 1
A two-dimensional scheme explaining the evaluation
of the distribution function, ρTF(rTF), of the tethered
end-to-free end distances, rTF. Function ρTF(rTF) is
constructed as a histogram on the basis of numbers
of end-points of individual chains which fall during
simulations into narrow semispherical layers with
increasing radius rTF and a constant thickness,
∆ = 1.25 l, drawn around the position of the te-
thered end of a chain. They are normalized by the
total number of all generated chains, Mtot, and by
numbers, Nr, of lattice sites in corresponding layers
(averaged over all possible positions of the tethered
ends in a narrow spherical surface layer of the
thickness, ∆S = 0.1 l). Numbers Nr increase for a
constant rTF with increasing R
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into a narrow concentric layer of the radius, rTF, and a width, ∆ = 1.25 l, the value 1/Nr

is added to the value of the calculated function corresponding to rTF (Nr is the number
of all lattice sites in that particular layer). Values Nr are averaged over all possible
locations of tethered ends in a narrow spherical surface layer of the thickness, ∆S = 0.1 l.
The calculated distribution is then constructed as a histogram based on the total number
of chain conformations, Mtot, ≈ 106 – 107, and normalized by Mtot. Numbers Nr for
constant rTF increase with increasing radius of the cavity, R. Magnitudes of ρTF(rTF)
generally decrease with increasing R since the normalization factor, Mtot Nr, is R-de-
pendent. Strictly speaking, distribution, ρTF(rTF), is a probability density function.

b) Distribution functions, ρTC(rTC), and ρFC(rFC), of the tethered end-to-gravity cen-
ter, and the free end-to-gravity center distances, respectively, are calculated similarly to
the ρTF(rTF) distribution.

c) Number distributions of the end-to-end distances, nTF(rTF), or the end-to-gravity
center distances, nTC(rTC) and nFC(rFC), are the number fractions of chains with dis-
tances rTF, rTC and rFC, respectively. They are not normalized by numbers of the lattice
sites in semispherical layers. Some of them are shown together with the ρ-functions to
give a better picture of the behavior of the system since it is not easy for a reader to
recalculate without other information the ρ-functions into the corresponding n-functions.

d) Angular distribution of orientations of the end-to-end vectors (i.e. the tethered
end-to-free end vectors, ψTF

(r)(ϑ )), with respect to the radial direction, and distribution of
orientations of the tethered end-to-gravity center vectors, ψTC

(r) (ϑ ), are normalized by
Mtot and by numbers of all lattice sites in volume elements confined between two cones
with a common apex at the surface (an inner angle ϑ , and the outer angle, ϑ  + ∆ϑ ), see
Fig. 2. Similarly to the evaluation of the ρ-functions, the normalization numbers, Nϑ,
are averaged over all possible apex location in the surface layer of the thickness, ∆S = 0.1 l.
Number fractions of chains with particular orientations of the end-to-end, rTF, or end-

FIG. 2
A two-dimensional scheme explaining the evalu-
ation of the angular distribution function of the
end-to-end vectors, rTF, with respect to the radial
direction, ψTF

(r)(ϑ). Values of ψTF
(r)(ϑ ) are normalized

by the total number of all generated chains, Mtot,
and by numbers of the lattice sites, Nϑ, in small
volume elements, ∆Vϑ , confined between two
cones with a common apex which is defined by the
tethered end position. Apex angles of the inner and
the outer cone are 2ϑ  and 2(ϑ  + ∆ϑ ), respectively,
with ∆ϑ  = 5°. Numbers, Nϑ, are averaged over all
possible positions of the tethered ends of chains
and for constant ϑ, they increase with increasing R
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to-gravity center vectors, rTC and rFC (not normalized by Nϑ numbers), i.e. nTF
(r)(ϑ ),

nTC
(r) (ϑ ) and nFC

(r) (ϑ ), are also shown in some figures. In case of orientations of the free
end-to-gravity center vectors, only functions nFC

(r) (ϑ) are discussed for the reasons that
are given in ref.22.

e) Angular distribution function of orientations of the end-to-end vectors with respect
to the orientation of the first-to-second segment connection, ψTF

(12)(ϕ), is calculated simi-
larly to the previous function.

f) Number fractions of projections of various vectors into either the radial direction
(e.g. f TF

(r)  (pTF
(r)), etc.), or the direction of the first-to-second segment connection (i.e.

f TF
(12) (pTF

(12))) are counted directly during simulations (see Fig. 3).
g) Distribution of the radii of gyration, gR(Rg), was calculated immediately after

evaluation of Rg values of individual chains.
h) Two other functions, gS

(C)(rCS) and nFC
(TC)(ω), were calculated to broaden the de-

scription of the system behavior. Function gS
(C)(rCS) is the density of segments of a

particular chain around its gravity center (i.e. in the distance rCS from the center). That
function is normalized by numbers of the lattice sites in narrow concentric spherical
layers with the origin in the gravity center, which are located inside the considered
cavity. Function nFC

(TC)(ω) is the angular distribution of mutual orientations of rFC and
rTC vectors (i.e. the number fractions of chains, rFC and rTC of which form angles ω).

RESULTS AND DISCUSSION

Low Density Limit

Distributions of the End-to-End and the End-to-Gravity Center Distances

In our systematic study of constrained tethered chain systems, we have gathered a large
collection of simulated data on the behavior of those systems under various conditions.

FIG. 3
A two-dimensional scheme explaining the evalu-
ation of projections of the end-to-end vectors, rTF,
into the radial direction and into the direction of the
first-to-second segment connection
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Those conditions are given by various combinations of the cavity radii, numbers of
chains and their lengths and may be characterized by two principal parameters: the
average segment density, <gS> = NL/Ntot (where Ntot denotes the total number of lattice
sites in the cavity), and the constraint parameter, ξ = Ll/R. However, those parameters
alone do not determine unambiguously all properties of the system. It is absolutely
impossible to show all dependences of calculated functions on all variables which
would be interesting to discuss in this paper. We have chosen a relatively large collec-
tion of simulated data and we try to show the most important trends. This collection
proves the consistency of the data and enables us to get maximum information on the
system behavior in a broad range of conditions. Many curves and their dependences on
various variables are not shown, but only described and discussed. Sometimes we make
references to our previous papers20–22 and even to certain particular figures which are
shown therein.

At first, we discuss the simulated distributions of the end-to-end distances (i.e. the
tethered end-to-free end distances) for single chains with increasing length (number of
segments, L) in spherical cavities with three different radii, R. We have chosen the
same basic set of combinations of L and R values as in our previous papers21,22 and
added several smaller and bigger values of L to broaden the relative range of the chain
lengths in some figures, where we have felt that it might help to assess general prin-
ciples of the constrained systems behavior. Figure 4a – 4c show the end-to-end dis-
tribution function, ρTF(rTF), for a single tethered chain of increasing length, L, in three
different cavities.

A comparison of curves for various systems shows an increasing effect of external
geometrical constraints on the chain conformations with increasing value ξ = Ll/R.
Distributions, ρTF(rTF), for less constrained tethered chains (i.e. for almost “non-com-
pressed chains” with a low ξ) rise steeply with increasing rTF (in the region of small
rTF), reach well-pronounced maxima for rTF < R (depending on L), and then decay fast
to zero for rTF > R. The decay parts are evidently S-shaped. With increasing ξ, the
shape and symmetry of distribution functions, ρTF(rTF), changes dramatically. Curves
for large ξ rise relatively slowly and reach very flat maxima around rTF ≈ (3/2)R. They
drop fast for rTF → 2R. The drop for large rTF is concave and faster than the rise in the
region of small rTF.

Curves for small ξ are similar to distributions for an isolated self-avoiding chain30,31.
It suggest that in case of less constrained systems, the tethered chain may adopt with a
high probability conformations quite similar to those of an isolated free chain. The only
significant exception is the loss of the spherical symmetry of possible chain orientations in
space with respect to the tethered end. Such a situation may preferentially take place if
the most probable end-to-end distance for the free chain of a given length and the
distance, for which the normalization factor, Nr, reaches a maximum value, are identical
(see Fig. 1). The sum of products of numbers of lattice points in the distance rTF (i.e.
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number of possible locations of chain ends) and corresponding numbers of different
paths how to reach them in L steps from a fixed tethered end determines the probability
of all conformations with a particular rTF value in dilute athermal system of constrained
tethered chains.

Figure 5a shows that distributions, ρTF(rTF), for low L – i.e. for low ξ (solid curves
1 – 3) are similar to each other – they depend on L only, but not at all on R. Maxima
are reached for the same rTF values. Their different magnitudes are caused by the R-de-
pendent normalization factor (cf. Fig. 1). The situation is quite different for high L – i.e.
for high ξ (dashed curves 4 – 6) and the character of individual curves changes signifi-
cantly with increasing R. The shape of the distribution function, ρTF(rTF), for L = 93
and the highest R = 15 l (for a relatively lower value of ξ – curve 6) is again similar to
curves 1 – 3.

The end-to-end distribution functions, ρTF(rTF), for increasing numbers of tethered
chains, N, in the smallest spherical cavity (i.e. for increasing average segment density,
<gS>, within the sphere with a radius, R = 10 l) are shown in Fig. 5b (solid curves for
relatively short chains, L = 31 and dashed curves for long chains, L = 93). Three find-
ings are of interest:

FIG. 4
Distribution function of the tethered end-to-free end distances, ρTF(rTF), for single tethered
chains with increasing number of segments, L, in three spherical cavities with increasing radius,
R: a R = 10 l; L = 31 (1), L = 40 (2), L = 56 (3), L = 93 (4); b R = 12.5 l; L = 40 (1), L = 52 (2),
L = 72 (3), L = 119 (4); c R = 15 l; L = 55 (1), L = 71 (2), L = 99 (3), L = 163 (4); insert in
Fig. 4c: number fractions, nTF(rTF), of chains with end-to-end distances, rTF, corresponding to
ρTF(rTF) in Fig. 4c
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a) Distributions for less constrained chains, ξ = 3.1, i.e. for relatively short ones
(solid curves), do not change significantly in a broad range of chain numbers, N ∈  <1,45>
(i.e. for average segment densities, <gS> ∈   <0.01 – 0.51>, in a sphere with R = 10 l).
The only observable change is a small shift in maxima positions towards lower rTF

value with increasing number of chains, N.
b) For systems with relatively long chains (strongly constrained systems with a high

ξ = 9.3), shapes of dashed curves change completely with increasing number of chains,
N ∈  <1,20>, which corresponds to <gS> ∈  <0.03 – 0.68>. At high segment densities,
distributions of the end-to-end distances, ρTF(rTF), for long tethered chains in con-
strained systems are in principle similar to those for short chains.

c) The most probable rTF distances for chains with different numbers of segments, L,
depend only little on L in dense systems and are to a great degree predetermined by the
radius of the sphere, R, (cf. also Fig. 1 in ref.21).

Results of our simulations suggest that long chains in dense systems are more coiled
back towards tethered end than isolated tethered chains under the same external con-
straints (i.e. in the empty sphere of the same radius). The most probable chain confor-
mations change fast with increasing numbers of chains (segment density) in the low

FIG. 5
Distribution functions ρTF(rTF) for the following system: a an isolated tethered chain of the length, L
= 31 (solid curves), in spherical cavities with R = 10 l (1), R = 12.5 l (2), R = 15 l (3); an isolated
tethered chain of the length, L = 93 (dashed curves), in spherical cavities with R = 10 l (4), R = 12.5 l
(5), R = 15 l (6); b multi-chain systems with chains of the length, L = 31 (solid curves) and L = 93
(dashed curves), in a spherical cavity with R = 10 l and increasing N, solid curves: N = 1, i.e. gS = 0.01
(1), N = 2, <gS> = 0.02 (2), N = 5, <gS> = 0.06 (3), N = 15, <gS> = 0.17 (4), N = 25, <gS> = 0.29
(5), N = 35, <gS> = 0.40 (6), N = 45, <gS> = 0.51 (7) and dashed curves: N = 1, i.e. <gS> = 0.03 (8),
N = 5, <gS> = 0.17 (9), N = 10, <gS> = 0.34 (10), N = 15, <gS> = 0.51 (11), N = 20, <gS> = 0.68
(12)
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segment density region. At elevated segment densities, the end-to-end distribution func-
tions do not almost depend on <gS>.

The presented results are in a good agreement with our previous observations20–22

and with results of other authors37,38 in the conclusion that the tethered chains in dense
systems are preferentially stretched and radially oriented in systems with a low relative
curvature, ξ, and disordered and more coiled in strongly curved (constrained) systems
with a high ξ. This finding agrees also with a low scaling parameter a ≈ 0.33 in the
ln–ln plot of √< rTF

2 > vs L that we have found in our earlier studies21.
To complete the discussion of distributions of the end-to-end distances, ρTF(rTF), we

offer also the number fractions (Fig. 4c – insert) of chains with end-to-end distances,
rTF, for the systems presented in Fig. 4c, since it may be difficult for a reader to recal-
culate without other information the probability densities, ρTF(rTF), to the number dis-
tribution functions, nTF(rTF).

Distributions of the tethered end-to-gravity center distances, ρTC(rTC), for single
chain systems with constant R, depend sensitively on L (Fig. 6a – 6c). With increasing
number of segments, L, the most probable positions, (rTC)max, increase significantly.
“Tethered halves” of chains are generally less stretched in dense systems (insert in
Fig. 6c – for systems with R = 10 l), which is the result of a general tendency of chains
in dense systems to fill in homogeneously the whole sphere with their segments5,20,39.

FIG. 6
Distribution function of the tethered end-to-gravity center distances, ρTC(rTC), for the same systems
containing a single tethered chain as in Fig. 4a – 4c; insert in Fig. 6c – distribution function,
ρTC(rTC), for the same multi-chain systems as in Fig. 5b, i.e. for R = 10 l
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In the studied systems, it is necessary to fill in a relatively large subsurfacial layer of
the sphere.

Distributions of the free end-to-gravity center distances, ρFC(rFC), for single chain
systems are shown in Fig. 7a – 7c. Distributions for short chains (L = 31 in Fig. 7a)
remind the “gaussian” distributions of the end-to-end distances for free and intersecting
flexible chains. This “gaussian” shape has basically two reasons: (i) the “free halves”
of chains are more flexible than the “tethered halves” and vectors rFC are oriented
almost at random in space, and (ii) the center of gravity of a chain does not usually
coincide with a real chain segment and the exclusion principle does not therefore lower
the probabilities for small rFC.

Distributions ρFC(rFC) for single chains and high ξ show maxima for non-zero values
of rFC which may seem a bit surprising. One would expect a higher density of segments
close to the gravity center for longer chains due in part to a higher chain flexibility and
to a more important influence of external geometrical constraints. To explain the ob-
tained curves, two functions: density of segments around the gravity center, gS

(C)(rCS),
and the angular distribution of mutual orientations of rFC and rTC vectors, nFC

(TC)(ω) (see
the next subsection), have to be considered. Densities of segments, gS

(C)(rCS), around the
gravity center (Fig. 7c – insert, for R = 15 l) for rCS → 0 decrease with increasing L.
The shape of ρFC(rFC), as well as the dependence of gS

(C)(rCS) on L may be accounted for

FIG. 7
Distribution function of the free end-to-gravity center distances, ρFC(rFC), for the same systems as in
Fig. 4; insert in Fig. 7c – the ensemble average density of segments in a single tethered chain around
its gravity center, gS

(C)(rCS), for R = 15 l and L = 55 (1), L = 71 (2), L = 99 (3) and L = 163 (4)
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by the assumption that the most probable conformation of a chain forms a “C-shaped”
contour and the gravity center is shifted (mainly for long chains) outside the main cloud
of chain segments. This assumption will be justified by discussing the mutual orienta-
tions of rFC and rTC vectors in the next subsection.

Orientational Distribution Functions

External geometrical constraints affect in the first place possible orientations of indi-
vidual segments of a chain in space with respect to the tethered end. It is the reason
why changes in angular distribution functions with increasing constraint parameter, ξ,
and segment density, <gS>, are more obvious than changes in other distributions.

Figure 8 shows the angular distribution functions of orientations of the end-to-end
vectors with respect to the radial direction, ψTF

(r)(ϑ), for the same systems as in Figs 4, 6
and 7. Distributions for systems with low constraint parameter, ξ, have a local mini-
mum at low angles close to ϑ  = 0°, and reach maxima for ϑ  ∈  <50 – 60°>. Then they
drop to low values for ϑ  → 90°. Maximum close to 50 – 60° is a simple result of high
numbers of possible arrangements of chains which reach with their free ends into the
volume elements defined by a small angle difference, ∆ϑ  = 5°, in the angular re-
gion, ϑ  ∈ <50°,60°>, i.e. into the volume elements, confined between two cones with
the common apex which corresponds to the tethered end location at the spherical sur-
face (the inner cone angle, ϑ , and the outer cone angle, ϑ  + ∆ϑ) – see Fig. 2. The

FIG. 8
Angular distribution function, ψTF

(r)(ϑ), of orientations of end-to-end vectors, rTF, with respect to the radial
direction (angle ϑ ) for the same systems as in Fig. 4; insert in Fig. 8c – number fractions, nTF

(r)(ϑ), of
chains corresponding to functions, ψTF

(r)(ϑ ), in Fig. 8c
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number fractions, nTF
(r)(ϑ ), corresponding to distribution functions, ψTF

(r)(ϑ ), in Fig. 8c,
are shown in the insert.

Long and severely constrained tethered chains in small closed volumes must adopt
different conformations than short and less constrained tethered chains. The former
prefer the longest possible rTF distances and that requires an almost radial orientation of
rTF vectors into the most distant part of the sphere (i.e. into the opposite part with
respect to the tethered end).

The most striking trends are depicted in Figs 9a, 9b. The basic shape of angular
distribution functions, ψTF

(r)(ϑ), for less constrained systems, ξ = 3.1, R = 10 l, does not
change with increasing segment density, <gS> (Fig. 9a). The only changes may be
observed in positions and values of maxima. Both characteristics increase with increas-
ing density of the system. For more constrained systems, ξ = 9.3, the situation is quite
different. The curve shape changes completely with increasing <gS>, see Fig. 9b. A
broad maximum close to ϑ  = 0° which is typical for the low density region disappears
at elevated densities and inverts into a local minimum. A new pronounced maximum
appears in the angular region, ϑ  ∈ <50°,60°>. Segments of long chains in dense and
constrained systems are forced to occupy a high and constant fraction of lattice points
everywhere in the sphere21,31,39. Individual chains are therefore more coiled at higher
densities. Average end-to-end distances, √< rTF

2 >, are shorter in comparison with those
in the low density region, √< rTF

2 > = 12.62 l (for N = 1, L = 93, i.e. <gS> = 0.03),
√< rTF

2 >  = 11.74 l (N = 10, L = 93, <gS> = 0.34), √< rTF
2 >  = 11.54 l (N = 20, L = 93,

<gS> = 0.68) (see also Fig. 5). The free ends of highly coiled tethered chains are pref-

FIG. 9
Angular distribution functions, ψTF

(r)(ϑ ), for multi-chain systems in a spherical cavity with the radius
R = 10 l: a L = 31; N = 1 (1), N = 2 (2), N = 5 (3), N = 15 (4), N = 25 (5), N = 35 (6), N = 45
(7); b L = 93; N = 1 (1), N = 5 (2), N = 10 (3), N = 15 (4), N = 20 (5)
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erentially placed into angular-dependent volume elements with high numbers of lattice
sites (see Fig. 2). Such multi-chain arrangements lead to the maximum entropy in dense
systems of long tethered chains. Those systems are therefore highly disordered.

Very interesting information may be gained from a comparison of various angular
characteristics concerning the orientations of the tethered end-to-gravity center and the
free end-to-gravity center vectors, rTC and rFC, respectively, and from their comparison
with orientations of the tethered-to-free end vectors, rTF.

Figure 10 shows the angular distribution of orientations of the tethered end-to-gravity
center vectors, ψTC

(r) (ϑ ), with respect to the radial direction, for the same systems as in
previous triplets of figures. The “tethered halves” are more influenced by the concave
curvature of the surface and are effectively more rigid. The resulting directions of rTC

vectors are therefore confined in a narrower angular range than the corresponding rTF

vectors. Distributions for less constrained systems, ξ = 3.1, are almost uniform for ϑ  ∈
<0°,45°> with a shallow minimum for ϑ  → 0° and an insignificant maximum close to
ϑ  ≈ 40°. All curves drop steeply for ϑ  > 45°. Distributions for highly constrained sys-
tems, ξ = 9.3, are quite narrow with well pronounced maxima for ϑ  → 0°. They de-
crease fast in the angular region ϑ  ∈  <20°,30°> and their values for ϑ  > 30° are
unimportant. The change in shape of ψTC

(r) (ϑ ) with increasing ξ is similar to that in
ψTF

(r)(ϑ). Curves ψTC
(r) (ϑ) for increasing numbers of chains, N, are shown in Fig. 11. At

FIG. 10
Angular distribution function of orientations of rTC vectors with respect to the radial direction,
ψTC

(r) (ϑ ), for the same systems as in Fig. 4, insert in Fig. 10c – number fractions, nTC
(r) (ϑ ), correspond-

ing to ψTC
(r) (ϑ ) in Fig. 10c
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high segment densities, all curves are similar to each other and remind basically curve 1 in
Fig. 10a with an evident minimum at low angles and a pronounced maximum for
ϑ  ∈  <30°,40°>, depending on L.

Number fractions of orientations of the tethered end-to-gravity center vectors, rTC,
with respect to the radial direction, nTC

(r) (ϑ ) (insert in Fig. 10c for chains in a cavity with
R = 15 l), and number fractions of orientations of the free end-to-gravity center vectors,
nFC

(r) (ϑ ), in Fig. 12 (for all studied systems), show clearly that the angular orientations of
the “tethered halves” of chains change both with ξ and <gS>, however those of the
“free halves” do not (cf. also Fig. 7 in ref.22 for high segment densities). As mentioned
earlier, those curves (as well as the other functions) were calculated in a broad region
of ξ and <gS>, but they are not shown here since we feel that the presented set of data
is just at the limit of a reasonable size of a comprehensible paper.

Distributions of the angles, ω, between rFC and rTC vectors, nFC
(TC)(ω), for single chain

systems in a cavity with R = 15 l, i.e. for N = 1 and L = 55 (curve 1), L = 72 (2),
L = 93 (3) and L = 163 (4) are shown in Fig. 13. These distribution functions (i.e. the
number distribution of chains with corresponding ω) have very pronounced maxima
close to 140° which suggests (together with the findings shown in Fig. 7) that the
average conformation of a chain forms a “C-shaped cloud of segments”.

Simulated distribution functions of projections of rTF, rTC and rFC vectors into the
radial direction, f TF

(r)(pTF
(r)), f TC

(r) (pTC
(r) ) and f FC

(r) (pFC
(r) ), confirm conclusions drawn from the

previous figures and are not shown here (they are available upon request). The “te-
thered halves” of chains are more influenced by both ξ and <gS> than the “free halves”.
In systems with long chains, an increase in segment density provokes the preferential
coiling of the “tethered halves” of chains.

FIG. 11
Angular distribution function, ψTC

(r) (ϑ), for the same multi-chain systems as in Fig. 9
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Persistence Properties

Figure 14 shows the number fractions of rTF vectors oriented at angles ϕ with respect
to the direction of the first-to-second segment connection, nTF

(12)(ϕ). The angular range of
possible orientations covers generally ϕ ∈  <0°,ϕmax>, with ϕmax < 180°, depending on

FIG. 12
Number fractions, nFC

(r) (ϑ), of chains with orientations of rFC vectors with respect to the radial direc-
tion (angle ϑ) for the same systems as in Fig. 4

FIG. 13
Number fraction, nFC

(TC)(ω), of chains with mutual orientations ω of the tethered end-to-gravity center
vector, rTC, and the free end-to-gravity center vector, rFC, for the same systems as in Fig. 4c, i.e. for
R = 15 l, N = 1 and L = 55 (1), L = 71 (2), L = 99 (3), L = 163 (4)
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FIG. 14
Number fractions, nTF

(12)(ϕ), of chains with rTF vectors oriented at the angle ϕ with respect to the di-
rection of the first-to-second segment connection for the same systems as in Fig. 4

FIG. 15
Distributions, f TF

(12)(pTF
(12)), of projections of rTF vectors into the direction of the first-to-second seg-

ment connection for the same systems as in Fig. 4
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R/l (we show angles from 0 to 180°, since nTF
(12)(ϕ) = 0, for ϕ > ϕmax). All simulated

curves are almost identical and coincide also with curves for dense systems (Fig. 11 in
ref.21).

Distributions of projections of vectors rTF into the direction of the first-to-second
segment connections, f TF

(12)(pTF
(12)), Fig. 15, depend very little both on ξ and <gS>, curves

for chains with L = 31 and 93 do not almost change with <gS> and are not shown here.
Individual distributions depend mainly on R. They are therefore very similar to those
presented in ref.22 for high segment densities. Simulated data for concave systems con-
taining one, or just few tethered chains submitted to significant geometrical constraints
confirm our assumption21,22 that high values of the ensemble average, <pTF

(12)> (the per-
sistence length), are mainly results of geometrical constraints imposed by the surface to
which the chain ends are tethered and which cannot be crossed. The presence of that
surface in the studied systems prevents the spatial randomization of chain conforma-
tions (i.e. the angular randomization of rTF orientations) around the first segment. Rela-
tively small closed volumes of all studied systems limit on the other hand the longest
possible projections, pTF

(12), and the simulated distribution functions, f TF
(12)(pTF

(12)), reach
pronounced maxima in a relatively narrow range of pTF

(12) which depend only little on ξ.

Radii of Gyration and Scaling Properties

The last section concerning the low density region is particularly interesting for com-
parison of simulated data with systems of free chains. Figures 16 and 17 show distribu-
tions of radii of gyrations, gR(Rg), for the same systems as in Figs 4 and 5, respectively.

FIG. 16
Distribution of the radii of gyration of individual chains, gR(Rg), for the same systems as in Fig. 4
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For low geometrical constraints, distribution functions of radii of gyration, gR(Rg), and
the corresponding average values, <Rg>, do not change with increasing <gS>. In sys-
tems with a high constraint parameter, ξ = 9.3, the radius of gyration decreases fast
with increasing <gS> and reaches soon a value which depends mainly on R and L, but
not on <gS>.

Figure 18 depicts the ln–ln plot of <Rg> vs the chain length, L, in the low density
region (for one tethered chain only). Curves 1, 2 and 3 correspond to the cavity radius,
R = 10 l, 12.5 l and 15 l, respectively. The scaling parameter, a = 0.42 ± 0.05, for
constraints, ξ ≈ 3 – 10, depends only little on R and does not almost differ from that for
dense systems (ref.21). The scaling of <Rg> does not depend on the average segment
density, but the pre-exponential factor does. The ln <Rg> − ln L plot in a broader range
of constraint parameters, ξ ∈  <1.0 – 10.9>, is shown in the insert (for R = 15 l). In such
a broad region of ξ (i.e. also L), the plot is not linear which is not surprising. Short
chains with L = 15 are stiff and relatively stretched, while the long chains with L = 163
are more flexible and must be more coiled in a cavity of the radius R = 15 l.

Concluding General Remarks Concerning the Low Density Region

A quite extensive collection of simulated data for one tethered chain under various
geometrical constraints, ξ, together with data for systems of many tethered chains in a
broad range of segment densities, <gS>, enabled us to analyze various aspects of the
conformational behavior of a single tethered and constrained chain and the relationship
between dilute and dense systems. A detailed discussion of various distribution func-
tions allows for a complex description of many properties of tethered chains in con-
strained volumes.

FIG. 17
Distribution of the radii of gyration of individual chains, gR(Rg), for the same systems as in Fig. 5
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Conformational characteristics of dilute systems of tethered chains submitted to low
constraints in relatively large spherical volumes remind basically those of an isolated
free self-avoiding chain (it concerns those characteristics which are meaningful to com-
pare) if we do not require the spherical symmetry of distribution functions with respect
to the tethered end. Relatively long chains in highly constrained systems must adopt
altered conformations which differ from those of free self-avoiding chains.

An orientational effect of the surface on the segment arrangements decays fast in the
chain segment succession from the tethered end towards the free end: the performed
simulations indicate that vectors rTC are partially oriented, whereas vectors rFC are uni-
formly distributed in all possible directions even for relatively short chains.

In dense multi-chain systems, individual chains are forced to occupy a high and
uniform fraction of lattice sites in the whole sphere. The “tethered halves” of chains are
more coiled and a high fraction of rTC vectors decline from the radial direction. The
dense systems with long chains are generally highly disordered.

Almost all distributions depend on <gS>, however we have not detected any indica-
tion of the behavior of individual chains approaching the “ideal chain behavior” (i.e.
that of an intersecting chain) which is known for dense systems of free self-avoiding
chains30,31. This finding is not surprising since external geometrical constraints play a
more important role than the other factors (e.g. segment density etc.).

FIG. 18
The ln <Rg>–ln L plot for systems containing one tethered chain in spherical cavities with R = 10 l (1),
R = 12.5 l (2), R = 15 l (3)
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Studies of the Applicability of our Simulation Procedure for Highly Dense Systems

It is well known fact that the self-avoiding walk algorithm does not work well at eleva-
ted segment densities and breaks down completely at high densities (an average frac-
tions of the occupied lattice sites ≈ 0.7). We have found earlier that the “crankshaft-
-motion” algorithm36 is only little efficient in systems of tethered chains20 in small
volumes even at relatively low segment densities ≈ 0.3. Simulation techniques, such as
“reptation” algorithm40,41, etc. cannot be used for tethered chains and the “bond-break-
ing” algorithm42,43 would violate the monodispersity of chains in our system. We use
the Frenkel and Siepmann34 modification of the self-avoiding walk algorithm which
was found suitable for dense systems of free chains. We were able to go up to quite
high densities (depending on the combination of N and L – it works better for combina-
tions of lower N with higher L values than for inverse combinations of higher N with
lower L). In the high density region, the simulation time increases considerably, since a
very high fraction of multi-chain arrangements are forbidden. Figure 19 shows an aver-
age CPU time necessary for a successful simulation of one micelle for R = 10 l, N = 25
and increasing number of segments, L, as a function of the average segment density,
<gS> = NL/Ntot. It is evident that in a relatively narrow region of <gS> ∈  <0.65,0.70>,
the simulation time starts to grow up very steeply.

We were concerned if this sudden increase in the computational time means:
a) Only a decreasing efficiency of the used simulation procedure,
b) a fatal break-down of the computational efficiency which prevents the proper

equilibration of the system in a finite time, or
c) a real physical change in the conformational behavior of the system.
We have performed a series of time-consuming simulations to investigate the above

described problem. Simulations for medium density systems (<gS> ∈  <0.5 – 0.6>)
comparing the modified and the original algorithm have shown that the new version of

FIG. 19
Average CPU time necessary to simulate one multi-chain
system containing a constant number, N = 25, of tethered
chains with increasing chain length, L, in a spherical cavity
with R = 10 l as a function of <gS>. Points with (−3) and
(−22) give CPU time for the upgraded algorithm using an
initial simultaneous self-avoiding walk with chains of the
length (L − 3) and (L − 22), respectively
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the simulation program gives equivalent data with the old version in a considerably
shorter time.

All distribution functions obtained with the upgraded algorithm for high density sys-
tems (<gS> > 0.6) are practically identical with those based on the original algorithm.
Small changes and their trends accompanying an increase in density into the region,
which we could not study with the original algorithm, are gradual and smooth. They
cannot be classified as sudden and physically meaningful changes in shape of distribu-
tion curves. Simulated data show that a significant loss of the computational efficiency
at high segment densities is an inherent feature of our simulation technique (similarly
to all simulations based on the random self-avoiding walk algorithm). However, the
upgraded algorithm allows to get well equilibrated data even for highly dense systems,
i.e. up to <gS> ca 0.75. Simulation time increases considerably for densities higher than
0.6, and the rise in CPU time is very steep and sudden, but no significant changes in
conformational characteristics with increasing <gS> were observed. We believe that the
data obtained for <gS> ∈  <0.5 – 0.75> describe qualitatively well the behavior of the
dense system of tethered chains in small spherical volumes at high densities, even for
<gS> → 1.

CONCLUSIONS

1. Computer simulations of conformational characteristics (distribution functions of
end-to-end distances, ρTF(rTF), end-to-gravity center distances, ρTC(rTC) and nFC(rFC),
etc., angular distribution functions of orientations of end-to-end vectors ψTF

(r)(ϑ ), with
respect to the radial direction, etc., distributions of projections of various vectors into
the selected directions, radii of gyration, etc.) were performed for systems of tethered
chains in small closed volumes for various numbers of chains, N, numbers of segments,
L, and increasing radii of spherical cavities, R.

2. A special attention was focused on two limiting density regions: (i) the low den-
sity limit (i.e. a single tethered chain in the cavity), and (ii) the high density region,
<gS> ca 0.5 – 0.75. Changes in various structural characteristics with increasing density
and constraint parameter, ξ = Ll/R, were studied.

3. Properties of significantly constrained tethered chains (ξ ≈ 6 – 10) depend sensi-
tively both on <gS> and ξ, whereas most of structural characteristics of less constrained
systems (ξ ≈ 3 – 4) depend only little on <gS> and do not depend at all on ξ.

4. Behavior of all studied systems is quite complex. Tethered chains in multi-chain
systems are more stretched and partially radially oriented at low constraints (i.e. in
systems with a low relative curvature, ξ  = Ll/R), and more coiled and disordered at
high ξ.

5. The upgraded version of the simulation procedure allows to study really dense
systems of tethered chains (<gS> ≈ 0.75) – in that case, the simulation time, necessary
to get well equilibrated data, increases very fast with increasing density.
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